

 Navigation

 	
 index

 	
 modules |

 	DjangoRestless 0.0.9 documentation

Django Restless - JSON-based RESTful APIs tools for Django

Django Restless is a lightweight set of tools for implementing JSON-based
RESTful APIs in Django. It helps you to write APIs that loosely follow
the RESTful paradigm, without forcing you to do so, and without imposing a
full-blown REST framework.

Restless provides only JSON support. If you need to support XML or
other formats, you probably want to take a look at some of the other frameworks
out there (we recommend Django REST framework).

Here is a simple view implementing an API endpoint greeting the caller:

from restless.views import Endpoint

class HelloWorld(Endpoint):
 def get(self, request):
 name = request.params.get('name', 'World')
 return {'message': 'Hello, %s!' % name}

One of the main ideas behind Restless is that it’s lightweight and reuses
as much of functionality in Django as possible. For example, input parsing and
validation is done using standard Django forms. This means you don’t have to
learn a whole new API to use Restless.

Besides giving you a set of tools to implement your own APIs, Restless comes
with a few endpoints modelled after Django’s generic class-based views for
common use-cases.

For example, here’s how to implement list and detail endpoints for MyModel
class allowing the users to list, create, get details of, update and delete
the models via API:

from restless.modelviews import ListEndpoint, DetailEndpoint
from myapp.models import MyModel

class MyList(ListEndpoint):
 model = MyModel

class MyDetail(DetailEndpoint):
 model = MyModel

Installation

Django Restless is available from cheeseshop, so you can install it via pip:

pip install DjangoRestless

For the latest and the greatest, you can also get it directly from git master:

pip install -e git+ssh://github.com/dobarkod/django-restless/tree/master

The supported Python versions are 2.6, 2.7 and 3.3.

Usage

After installation, first add restless to INSTALLED_APPS (this is not
strictly necessary, as restless is just a bunch of helper classes and
functions, but is good form nevertheless):

INSTALLED_APPS += ('restless',)

Views

To implement API endpoints (resources), write class-based views subclassing
from restless.views.Endpoint:

from restless.views import Endpoint

class HelloWorld(Endpoint):
 def get(self, request):
 name = request.params.get('name', 'World')
 return {'message': 'Hello, %s!' % name}

This view will return a HTTP 200 response with a JSON payload greeting the
caller. To return status code other than 200, use one of the
restless.views.JSONResponse and pass the response in. Note that
error responses take a string (error description) and optional error details
keyword arguments.

Register the views in URLconf as you’d do with any other class-based view:

url(r'^hello/$', HelloWorld.as_view())

To require authentication, subclass from appropriate mixin as well. For example,
if you’re using HTTP Basic authentication, have all your views subclass
restless.auth.BasicHttpAuthMixin and use
restless.auth.login_required for requiring the user be
authenticated:

from restless.auth import BasicHttpAuthMixin, login_required

class SecretGreeting(Endpoint, BasicHttpAuthMixin):
 @login_required
 def get(self, request):
 return {'message': 'Hello, %s!' % request.user}

If you’re using session-based username/password authentication, you can use
the restless.auth.UsernamePasswordAuthMixin in the above example,
or just use restless.auth.AuthenticateEndpoint which will do the
same, and return the serialized User object back to the authenticated user:

url(r'^login/$', restless.auth.AuthenticateEndpoint.as_view())

Model serialization

Model serialization can be as simple or as complex as needed. In the simplest
case, you just pass the object to restless.models.serialize(), and
get back a dictionary with all the model fields (except related models)
serialized:

from django.contrib.auth import get_user_model
from restless.models import serialize

User = get_user_model()

class GetUserProfileData(Endpoint):
 def get(self, request, user_id):
 profile = User.objects.get(pk=user_id).get_profile()
 return serialize(profile)

In some cases, you want to serialize only a subset of fields. Do this by
passing a list of fields to serialize as the second argument:

class GetUserData(Endpoint):
 def get(self, request, user_id):
 fields = ('id', 'username', 'first_name', 'last_name', 'email')
 user = User.objects.get(pk=user_id)
 return serialize(user, fields)

Or you may only want to exclude a certain field:

class GetUserData(Endpoint):
 def get(self, request, user_id):
 user = User.objects.get(pk=user_id)
 return serialize(user, exclude=['password'])

Sometimes, you really need to complicate things. For example, for a book
author, you want to retrieve all the books they’ve written, and for each
book, all the user reviews, as well as the average rating for the author
accross all their books:

class GetAuthorWithBooks(Endpoint):
 def get(self, request, author_id):
 author = Author.objects.get(pk=author_id)
 return serialize(author, include=[
 ('books', dict(# for each book
 fields=[
 'title',
 'isbn',
 ('reviews', dict()) # get a list of all reviews
]
)),
 ('average_rating',
 lambda a: a.books.all().aggregate(
 Avg('rating'))['avg_rating'])
])

Please see the restless.models.serialize() documentation for detailed
description how this works.

Note

The serialize function changed in 0.0.4, and the related way of
specifying sub-objects is now deprecated.

Data deserialization and validation

There is no deserialization support. Django already has awesome functionality
in this regard called ModelForms, and that’s the easiest way to go about
parsing users’ data and storing it into Django models.

Since Restless understands JSON payloads, it’s easy to use Django forms to
parse and validate client input, even in more complex cases where several
models (or several forms) need to be parsed at once.

Let’s say we have a Widget object that can be extended with Addon:

class Widget(models.Model):
 title = models.CharField(max_length=255)

class Addon(models.Model):
 parent = models.OneToOneField(Widget, related_name='addon')
 text = model.TextField()

class WidgetForm(forms.ModelForm):
 class Meta:
 model = Widget

class AddonForm(forms.ModelForm):
 class Meta:
 model = Addon

and the PUT request from user modifies the Widget object:

{ "title": "My widget!", "addon": { "text": "This is my addon" } }

A view handing the PUT request might look something like:

class ModifyWidget(Endpoint):
 def put(self, request, widget_id):
 widget = Widget.objects.get(pk=widget_id)
 widget_form = WidgetForm(request.data, instance=widget)
 addon_form = AddonForm(request.data.get('addon', {}),
 instance=widget.addon)
 if widget_form.is_valid() and addon_form.is_valid():
 widget_form.save()
 addon_form.save()

You can find more examples in the sample project used to test restless in the
various files in the “testproject/testapp” folder of the source repository.

Generic views for CRUD operations on models

If you need a generic object CRUD operations, you can make
use of the restless.modelviews.ListEndpoint and
restless.modelviews.DetailEndpoint views. Here’s an example of
the list and detail views providing an easy way to list, create, get, update
and delete a Book objects in a database:

views.py
class BookList(ListEndpoint):
 model = Book

class BookDetail(DetailEndpoint):
 model = Book

urls.py
urlpatterns += patterns('',
 url(r'^books/$', BookList.as_view(),
 name='book_list'),
 url(r'^books/(?P<pk>\d+)$', BookDetail.as_view(),
 name='book_detail'))

The pk parameter here was automatically used by the detail view.
The parameter name can be customized if needed.

There are a number of ways to customize the generic views, explained in the
API reference in more detail.

RPC-style API for model views

Sometimes a RPC-style API on models is needed (for example, to set a flag on
the model). The restless.modelviews.ActionEndpoint provides an
easy way to do it. ActionEndpoint is a subclass of
restless.modelviews.DetailEndpoint allowing only POST HTTP
request by default, which invoke the
restless.modelviews.DetailEndpoint.action() method.

Here’s an example of a Book endpoint on which a POST marks the book as
borrowed by the current user:

class BorrowBook(ActionEndpoint):
 model = Book

 @login_required
 def action(self, request, obj, *args, **kwargs):
 obj.borrowed_by = request.user
 obj.save()
 return serialize(obj)

API Reference

restless.views

Base classes for class-based views implementing the API endpoints.

	
class restless.views.Endpoint(**kwargs)[source]

	Class-based Django view that should be extended to provide an API
endpoint (resource). To provide GET, POST, PUT, HEAD or DELETE methods,
implement the corresponding get(), post(), put(), head() or delete()
method, respectively.

If you also implement authenticate(request) method, it will be called
before the main method to provide authentication, if needed. Auth mixins
use this to provide authentication.

The usual Django “request” object passed to methods is extended with a
few more attributes:

	request.content_type - the content type of the request

	request.params - a dictionary with GET parameters

	
	request.data - a dictionary with POST/PUT parameters, as parsed from

	either form submission or submitted application/json data payload

	request.raw_data - string containing raw request body

The view method should return either a HTTPResponse (for example, a
redirect), or something else (usually a dictionary or a list). If something
other than HTTPResponse is returned, it is first serialized into
restless.http.JSONResponse with a status code 200 (OK),
then returned.

The authenticate method should return either a HttpResponse, which will
shortcut the rest of the request handling (the view method will not be
called), or None (the request will be processed normally).

Both methods can raise a restless.http.HttpError exception
instead of returning a HttpResponse, to shortcut the request handling and
immediately return the error to the client.

restless.modelviews

Generic class-based views providing CRUD API for the models.

	
class restless.modelviews.ListEndpoint(**kwargs)[source]

	List restless.views.Endpoint supporting getting a list of
objects and creating a new one. The endpoint exports two view methods by
default: get (for getting the list of objects) and post (for creating a
new object).

The only required configuration for the endpoint is the model
class attribute, which should be set to the model you want to have a list
(and/or create) endpoints for.

You can also provide a form class attribute, which should be the
model form that’s used for creating the model. If not provided, the
default model class for the model will be created automatically.

You can restrict the HTTP methods available by specifying the methods
class variable.

	
get(request, *args, **kwargs)[source]

	Return a serialized list of objects in this endpoint.

	
get_query_set(request, *args, **kwargs)[source]

	Return a QuerySet that this endpoint represents.

If model class attribute is set, this method returns the all()
queryset for the model. You can override the method to provide custom
behaviour. The args and kwargs parameters are passed in directly
from the URL pattern match.

If the method raises a restless.http.HttpError exception,
the rest of the request processing is terminated and the error is
immediately returned to the client.

	
post(request, *args, **kwargs)[source]

	Create a new object.

	
serialize(objs)[source]

	Serialize the objects in the response.

By default, the method uses the restless.models.serialize()
function to serialize the objects with default behaviour. Override the
method to customize the serialization.

	
class restless.modelviews.DetailEndpoint(**kwargs)[source]

	Detail restless.views.Endpoint supports getting a single
object from the database (HTTP GET), updating it (HTTP PUT) and deleting
it (HTTP DELETE).

The only required configuration for the endpoint is the model
class attribute, which should be set to the model you want to have the
detail endpoints for.

You can also provide a form class attribute, which should be the
model form that’s used for updating the model. If not provided, the
default model class for the model will be created automatically.

You can restrict the HTTP methods available by specifying the methods
class variable.

	
delete(request, *args, **kwargs)[source]

	Delete the object represented by this endpoint.

	
get(request, *args, **kwargs)[source]

	Return the serialized object represented by this endpoint.

	
get_instance(request, *args, **kwargs)[source]

	Return a model instance represented by this endpoint.

If model is set and the primary key keyword argument is present,
the method attempts to get the model with the primary key equal
to the url argument.

By default, the primary key keyword argument name is pk. This can
be overridden by setting the lookup_field class attribute.

You can override the method to provide custom behaviour. The args
and kwargs parameters are passed in directly from the URL pattern
match.

If the method raises a restless.http.HttpError exception,
the rest of the request processing is terminated and the error is
immediately returned to the client.

	
put(request, *args, **kwargs)[source]

	Update the object represented by this endpoint.

	
serialize(obj)[source]

	Serialize the object in the response.

By default, the method uses the restless.models.serialize()
function to serialize the object with default behaviour. Override the
method to customize the serialization.

	
class restless.modelviews.ActionEndpoint(**kwargs)[source]

	A variant of DetailEndpoint for supporting a RPC-style action
on a resource. All the documentation for DetailEndpoint applies, but
only the POST HTTP method is allowed by default, and it invokes the
ActionEndpoint.action() method to do the actual work.

If you want to support any of the other HTTP methods with their default
behaviour as in DetailEndpoint, just modify the methods list to
include the methods you need.

restless.models

Model serialization helper.

	
restless.models.serialize(src, fields=None, related=None, include=None, exclude=None, fixup=None)[source]

	Serialize Model or a QuerySet instance to Python primitives.

By default, all the model fields (and only the model fields) are
serialized. If the field is a Python primitive, it is serialized as such,
otherwise it is converted to string in utf-8 encoding.

If fields is specified, it is a list of attribute descriptions to be
serialized, replacing the default (all model fields). If include is
specified, it is a list of attribute descriptions to add to the default
list. If exclude is specified, it is a list of attribute descriptions
to remove from the default list.

Each attribute description can be either:

	a string - includes a correspondingly named attribute of the object
being serialized (eg. name, or created_at); this can be a
model field, a property, class variable or anything else that’s
an attribute on the instance

	a tuple, where the first element is a string key and the second
is a function taking one argument - function will be run with the
object being serialized as the argument, and the function result will
be included in the result, with the key being the first tuple element

	a tuple, where the first element is a related model attribute name
and the second is a dictionary - related model instance(s) will
be serialized recursively and added as sub-object(s) to the object
being serialized; the dictionary may specify fields, include,
exclude and fixup options for the related models following the
same semantics as for the object being serialized.

The fixup argument, if defined, is a function taking two arguments, the
object being serialized, and the serialization result dict, and returning
the modified serialization result. It’s useful in cases where it’s
neccessary to modify the result of the automatic serialization, but its
use is discouraged if the same result can be obtained through the
attribute descriptions.

The related argument (a different way of specifying related
objects to be serialized) is deprecated and included only for backwards
compatibility.

Example:

serialize(obj, fields=[
 'name', # obj.name
 'dob', # obj.dob
 ('age', lambda obj: date.today() - obj.dob),
 ('jobs', dict(# for job in obj.jobs.all()
 fields=[
 'title', # job.title
 'from', # job.from
 'to', # job.to,
 ('duration', lambda job: job.to - job.from),
]
))
])

Returns: a dict (if a single model instance was serialized) or a list
od dicts (if a QuerySet was serialized) with the serialized data. The
data returned is suitable for JSON serialization using Django’s JSON
serializator.

	
restless.models.flatten(attname)[source]

	Fixup helper for serialize.

Given an attribute name, returns a fixup function suitable for serialize()
that will pull all items from the sub-dict and into the main dict. If
any of the keys from the sub-dict already exist in the main dict, they’ll
be overwritten.

restless.auth

Authentication helpers.

	
class restless.auth.UsernamePasswordAuthMixin[source]

	restless.views.Endpoint mixin providing user authentication
based on username and password (as specified in “username” and “password”
request GET params).

	
class restless.auth.BasicHttpAuthMixin[source]

	restless.views.Endpoint mixin providing user authentication
based on HTTP Basic authentication.

	
class restless.auth.AuthenticateEndpoint(**kwargs)[source]

	Session-based authentication API endpoint. Provides a GET method for
authenticating the user based on passed-in “username” and “password”
request params. On successful authentication, the method returns
authenticated user details.

Uses UsernamePasswordAuthMixin to actually implement the
Authentication API endpoint.

On success, the user will get a response with their serialized User
object, containing id, username, first_name, last_name and email fields.

	
restless.auth.login_required(fn)[source]

	Decorator for restless.views.Endpoint methods to require
authenticated, active user. If the user isn’t authenticated, HTTP 403 is
returned immediately (HTTP 401 if Basic HTTP authentication is used).

restless.http

HTTP responses with JSON payload.

	
class restless.http.JSONResponse(data, **kwargs)[source]

	HTTP response with JSON body (“application/json” content type)

	
class restless.http.JSONErrorResponse(reason, **additional_data)[source]

	HTTP Error response with JSON body (“application/json” content type)

	
exception restless.http.HttpError(code, reason, **additional_data)[source]

	Exception that results in returning a JSONErrorResponse to the user.

	
class restless.http.Http200(data, **kwargs)[source]

	HTTP 200 OK

	
class restless.http.Http201(data, **kwargs)[source]

	HTTP 201 CREATED

	
class restless.http.Http400(reason, **additional_data)[source]

	HTTP 400 Bad Request

	
class restless.http.Http401(typ='basic', realm='api')[source]

	HTTP 401 UNAUTHENTICATED

	
class restless.http.Http403(reason, **additional_data)[source]

	HTTP 403 FORBIDDEN

How to contribute

You’ve found (and hopefully fixed) a bug, or have a great idea you think
should be added to Django Restless? Patches welcome! :-)

Bugs (and feature requests) are reported via the GitHub Issue tracker:
https://github.com/dobarkod/django-restless/issues/

If you have a bug fix or a patch for a feature you’d like to include, here’s
how to submit the patch:

	Fork the https://github.com/dobarkod/django-restless.git
repository

	Make the changes in a branch in your fork

	Make a pull request from the branch in your fork to dobarkod/django-restless master

If you’re suggesting adding a feature, please file a feature request first
before implementing it, so we can discuss your proposed solution.

When contributing code, please adhere to the Python coding style guide (PEP8).
Both bug fixes and new feature implementations should come with corresponding
unit/functional tests. For bug fixes, the test should exhibit the bug if the
fix is not applied.

You can see the list of the contributors in the AUTHORS.md file in the
Django Restless source code.

Repository

Restless is hosted on GitHub, using git version control. When checking
for bugs, always try the git master first:

git clone https://github.com/dobarkod/django-restless.git

Tests and docs

To run the tests:

make test

To run the tests and get coverage report:

make coverage

To build Sphinx docs:

make docs

To build everything, run the tests with coverage support, and build the
docs:

make

To clean the build directory:

make clean

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012-2014, DjangoRestless contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	DjangoRestless 0.0.9 documentation

 Python Module Index

 r

 			

 		
 r	

 	[image: -]
 	
 restless	

 	
 	
 restless.auth	

 	
 	
 restless.http	

 	
 	
 restless.models	

 	
 	
 restless.modelviews	

 	
 	
 restless.views	

 Copyright 2012-2014, DjangoRestless contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	DjangoRestless 0.0.9 documentation

Index

 A
 | B
 | D
 | E
 | F
 | G
 | H
 | J
 | L
 | P
 | R
 | S
 | U

A

 	

 	ActionEndpoint (class in restless.modelviews)

 	

 	AuthenticateEndpoint (class in restless.auth)

B

 	

 	BasicHttpAuthMixin (class in restless.auth)

D

 	

 	delete() (restless.modelviews.DetailEndpoint method)

 	

 	DetailEndpoint (class in restless.modelviews)

E

 	

 	Endpoint (class in restless.views)

F

 	

 	flatten() (in module restless.models)

G

 	

 	get() (restless.modelviews.DetailEndpoint method)

 	

 	(restless.modelviews.ListEndpoint method)

 	get_instance() (restless.modelviews.DetailEndpoint method)

 	

 	get_query_set() (restless.modelviews.ListEndpoint method)

H

 	

 	Http200 (class in restless.http)

 	Http201 (class in restless.http)

 	Http400 (class in restless.http)

 	

 	Http401 (class in restless.http)

 	Http403 (class in restless.http)

 	HttpError

J

 	

 	JSONErrorResponse (class in restless.http)

 	

 	JSONResponse (class in restless.http)

L

 	

 	ListEndpoint (class in restless.modelviews)

 	

 	login_required() (in module restless.auth)

P

 	

 	post() (restless.modelviews.ListEndpoint method)

 	

 	put() (restless.modelviews.DetailEndpoint method)

R

 	

 	restless.auth (module)

 	restless.http (module)

 	restless.models (module)

 	

 	restless.modelviews (module)

 	restless.views (module)

S

 	

 	serialize() (in module restless.models)

 	

 	(restless.modelviews.DetailEndpoint method)

 	(restless.modelviews.ListEndpoint method)

U

 	

 	UsernamePasswordAuthMixin (class in restless.auth)

 Copyright 2012-2014, DjangoRestless contributors.
 Created using Sphinx 1.3.5.

 _static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		DjangoRestless 0.0.9 documentation »

 All modules for which code is available

		restless.auth

		restless.http

		restless.models

		restless.modelviews

		restless.views

 © Copyright 2012-2014, DjangoRestless contributors.
 Created using Sphinx 1.3.5.

_modules/restless/views.html

 Navigation

 		
 index

 		
 modules |

 		DjangoRestless 0.0.9 documentation »

 		Module code »

 Source code for restless.views

from django.views.generic import View
from django.utils.decorators import method_decorator
from django.views.decorators.csrf import csrf_exempt

from django.conf import settings
from django.http import HttpResponse
from .http import Http200, Http500, HttpError

import traceback
import json

__all__ = ['Endpoint']

[docs]class Endpoint(View):
 """
 Class-based Django view that should be extended to provide an API
 endpoint (resource). To provide GET, POST, PUT, HEAD or DELETE methods,
 implement the corresponding get(), post(), put(), head() or delete()
 method, respectively.

 If you also implement authenticate(request) method, it will be called
 before the main method to provide authentication, if needed. Auth mixins
 use this to provide authentication.

 The usual Django "request" object passed to methods is extended with a
 few more attributes:

 * request.content_type - the content type of the request
 * request.params - a dictionary with GET parameters
 * request.data - a dictionary with POST/PUT parameters, as parsed from
 either form submission or submitted application/json data payload
 * request.raw_data - string containing raw request body

 The view method should return either a HTTPResponse (for example, a
 redirect), or something else (usually a dictionary or a list). If something
 other than HTTPResponse is returned, it is first serialized into
 :py:class:`restless.http.JSONResponse` with a status code 200 (OK),
 then returned.

 The authenticate method should return either a HttpResponse, which will
 shortcut the rest of the request handling (the view method will not be
 called), or None (the request will be processed normally).

 Both methods can raise a :py:class:`restless.http.HttpError` exception
 instead of returning a HttpResponse, to shortcut the request handling and
 immediately return the error to the client.
 """

 @staticmethod
 def _parse_content_type(content_type):
 if ';' in content_type:
 ct, params = content_type.split(';', 1)
 try:
 params = dict(param.split('=') for param in params.split())
 except:
 params = {}
 else:
 ct = content_type
 params = {}
 return ct, params

 def _parse_body(self, request):
 if request.method not in ['POST', 'PUT', 'PATCH']:
 return

 ct, ct_params = self._parse_content_type(request.content_type)
 if ct == 'application/json':
 charset = ct_params.get('charset', 'utf-8')
 try:
 data = request.body.decode(charset)
 request.data = json.loads(data)
 except Exception as ex:
 raise HttpError(400, 'invalid JSON payload: %s' % ex)
 elif ((ct == 'application/x-www-form-urlencoded') or
 (ct.startswith('multipart/form-data'))):
 request.data = dict((k, v) for (k, v) in request.POST.items())
 else:
 request.data = request.body

 def _process_authenticate(self, request):
 if hasattr(self, 'authenticate') and callable(self.authenticate):
 auth_response = self.authenticate(request)

 if isinstance(auth_response, HttpResponse):
 return auth_response
 elif auth_response is None:
 pass
 else:
 raise TypeError('authenticate method must return '
 'HttpResponse instance or None')

 @method_decorator(csrf_exempt)
 def dispatch(self, request, *args, **kwargs):
 request.content_type = request.META.get('CONTENT_TYPE', 'text/plain')
 request.params = dict((k, v) for (k, v) in request.GET.items())
 request.data = None
 request.raw_data = request.body

 try:
 self._parse_body(request)
 authentication_required = self._process_authenticate(request)
 if authentication_required:
 return authentication_required

 response = super(Endpoint, self).dispatch(request, *args, **kwargs)
 except HttpError as err:
 response = err.response
 except Exception as ex:
 if settings.DEBUG:
 response = Http500(str(ex), traceback=traceback.format_exc())
 else:
 raise

 if not isinstance(response, HttpResponse):
 response = Http200(response)
 return response

 © Copyright 2012-2014, DjangoRestless contributors.
 Created using Sphinx 1.3.5.

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

search.html

 Navigation

 		
 index

 		
 modules |

 		DjangoRestless 0.0.9 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012-2014, DjangoRestless contributors.
 Created using Sphinx 1.3.5.

_modules/restless/auth.html

 Navigation

 		
 index

 		
 modules |

 		DjangoRestless 0.0.9 documentation »

 		Module code »

 Source code for restless.auth

from django.contrib import auth
from django.utils.encoding import DjangoUnicodeDecodeError
import base64

try:
 from django.utils.encoding import smart_text
except ImportError:
 from django.utils.encoding import smart_unicode as smart_text

from .views import Endpoint
from .http import Http200, Http401, Http403
from .models import serialize

__all__ = ['UsernamePasswordAuthMixin', 'BasicHttpAuthMixin',
 'AuthenticateEndpoint', 'login_required']

[docs]class UsernamePasswordAuthMixin(object):
 """
 :py:class:`restless.views.Endpoint` mixin providing user authentication
 based on username and password (as specified in "username" and "password"
 request GET params).
 """

 def authenticate(self, request):
 if request.method == 'POST':
 self.username = request.data.get('username')
 self.password = request.data.get('password')
 else:
 self.username = request.params.get('username')
 self.password = request.params.get('password')

 user = auth.authenticate(username=self.username,
 password=self.password)
 if user is not None and user.is_active:
 auth.login(request, user)

Taken from Django Rest Framework
[docs]class BasicHttpAuthMixin(object):
 """
 :py:class:`restless.views.Endpoint` mixin providing user authentication
 based on HTTP Basic authentication.
 """

 def authenticate(self, request):
 if 'HTTP_AUTHORIZATION' in request.META:
 authdata = request.META['HTTP_AUTHORIZATION'].split()
 if len(authdata) == 2 and authdata[0].lower() == "basic":
 try:
 raw = authdata[1].encode('ascii')
 auth_parts = base64.b64decode(raw).split(b':')
 except:
 return
 try:
 uname, passwd = (smart_text(auth_parts[0]),
 smart_text(auth_parts[1]))
 except DjangoUnicodeDecodeError:
 return

 user = auth.authenticate(username=uname, password=passwd)
 if user is not None and user.is_active:
 # We don't user auth.login(request, user) because
 # may be running without session
 request.user = user

[docs]def login_required(fn):
 """
 Decorator for :py:class:`restless.views.Endpoint` methods to require
 authenticated, active user. If the user isn't authenticated, HTTP 403 is
 returned immediately (HTTP 401 if Basic HTTP authentication is used).
 """
 def wrapper(self, request, *args, **kwargs):
 if request.user is None or not request.user.is_active:
 if isinstance(self, BasicHttpAuthMixin):
 return Http401()
 else:
 return Http403('forbidden')
 return fn(self, request, *args, **kwargs)
 wrapper.__name__ = fn.__name__
 wrapper.__doc__ = fn.__doc__
 return wrapper

[docs]class AuthenticateEndpoint(Endpoint, UsernamePasswordAuthMixin):
 """
 Session-based authentication API endpoint. Provides a GET method for
 authenticating the user based on passed-in "username" and "password"
 request params. On successful authentication, the method returns
 authenticated user details.

 Uses :py:class:`UsernamePasswordAuthMixin` to actually implement the
 Authentication API endpoint.

 On success, the user will get a response with their serialized User
 object, containing id, username, first_name, last_name and email fields.
 """

 user_fields = ('id', 'username', 'first_name', 'last_name', 'email')

 @login_required
 def get(self, request):
 return Http200(serialize(request.user, fields=self.user_fields))

 © Copyright 2012-2014, DjangoRestless contributors.
 Created using Sphinx 1.3.5.

_modules/restless/models.html

 Navigation

 		
 index

 		
 modules |

 		DjangoRestless 0.0.9 documentation »

 		Module code »

 Source code for restless.models

import six

from django.core import serializers
from django.db import models

from django.utils.encoding import force_text

__all__ = ['serialize', 'flatten']

def serialize_deprecated(src, fields=None, related=None):
 """Serialize Model or QuerySet to JSON format.

 By default, all of the model fields (including 'id') are serialized, and
 foreign key fields are serialized as the id of the referenced object.

 If 'fields' tuple/list is specified, only fields listed in it are
 serialized. If 'related' dict is specified, fields listed in it
 will be fully (recursively) serialized.

 Format of 'related' is:
 field_name -> (related_object_fields, related_object_related,
 flatten)
 As a shortcut, field_name -> None is equivalent to
 field_name -> (None, None, False)

 The values in 'related' specify 'fields' and 'related' arguments
 to be passed to the related object serialization. If 'flatten' is True,
 the items from the sub-dict will be added to the current dict instead of
 adding a single subdict under the 'field_name' key (useful for OneToOne
 relations, where a model basically just extends the base one).
 """

 # for m2m fields we'll get a Manager instead of a Model; deal with it
 # by just getting all the items

 if (isinstance(src, models.Manager) or
 isinstance(src, models.query.QuerySet)):
 return [serialize_deprecated(item, fields, related)
 for item in src.all()]

 if isinstance(src, list):
 return [serialize_deprecated(item, fields, related) for item in src]

 # we use the Django python serializer to serialize the model
 # and optionally recurse into related fields
 elif isinstance(src, models.Model):
 # serialize fields
 data = serializers.serialize('python', [src], fields=fields)
 data = data[0]['fields']
 if fields is None or 'id' in fields:
 data['id'] = src.id

 # recursively serialize full fields, if any
 if related:
 for k, v in related.items():
 if v is None:
 v = (None, None, False)
 (sub_fields, sub_related, flatten) = v
 sub = serialize_deprecated(getattr(src, k), sub_fields,
 sub_related)
 if flatten and sub:
 for subk, subv in sub.items():
 data[subk] = subv
 if k in data:
 del data[k]
 else:
 data[k] = sub

 return data

 # just in case ordinary Python data sneaked past us, just return it
 else:
 return src

def serialize_model(obj, fields=None, include=None, exclude=None,
 fixup=None):

 fieldmap = {}
 for f in obj._meta.concrete_model._meta.local_fields:
 fieldmap[f.name] = f.attname

 def getfield(f):
 return getattr(obj, fieldmap.get(f, f))

 if fields is None:
 fields = list(fieldmap.keys())
 else:
 fields = list(fields)

 if exclude is not None:
 fields = [f for f in fields if f not in exclude]

 if include is not None:
 for i in include:
 if isinstance(i, tuple) or (isinstance(i, six.string_types)):
 fields.append(i)

 data = {}
 for f in fields:
 if isinstance(f, six.string_types):
 data[f] = force_text(getfield(f), strings_only=True)
 elif isinstance(f, tuple):
 k, v = f
 if callable(v):
 data[k] = v(obj)
 elif isinstance(v, dict):
 data[k] = serialize(getattr(obj, k), **v)

 if fixup:
 data = fixup(obj, data)

 return data

[docs]def serialize(src, fields=None, related=None, include=None, exclude=None,
 fixup=None):
 """Serialize Model or a QuerySet instance to Python primitives.

 By default, all the model fields (and only the model fields) are
 serialized. If the field is a Python primitive, it is serialized as such,
 otherwise it is converted to string in utf-8 encoding.

 If `fields` is specified, it is a list of attribute descriptions to be
 serialized, replacing the default (all model fields). If `include` is
 specified, it is a list of attribute descriptions to add to the default
 list. If `exclude` is specified, it is a list of attribute descriptions
 to remove from the default list.

 Each attribute description can be either:

 * a string - includes a correspondingly named attribute of the object
 being serialized (eg. `name`, or `created_at`); this can be a
 model field, a property, class variable or anything else that's
 an attribute on the instance

 * a tuple, where the first element is a string key and the second
 is a function taking one argument - function will be run with the
 object being serialized as the argument, and the function result will
 be included in the result, with the key being the first tuple element

 * a tuple, where the first element is a related model attribute name
 and the second is a dictionary - related model instance(s) will
 be serialized recursively and added as sub-object(s) to the object
 being serialized; the dictionary may specify `fields`, `include`,
 `exclude` and `fixup` options for the related models following the
 same semantics as for the object being serialized.

 The `fixup` argument, if defined, is a function taking two arguments, the
 object being serialized, and the serialization result dict, and returning
 the modified serialization result. It's useful in cases where it's
 neccessary to modify the result of the automatic serialization, but its
 use is discouraged if the same result can be obtained through the
 attribute descriptions.

 The `related` argument (a different way of specifying related
 objects to be serialized) is deprecated and included only for backwards
 compatibility.

 Example::

 serialize(obj, fields=[
 'name', # obj.name
 'dob', # obj.dob
 ('age', lambda obj: date.today() - obj.dob),
 ('jobs', dict(# for job in obj.jobs.all()
 fields=[
 'title', # job.title
 'from', # job.from
 'to', # job.to,
 ('duration', lambda job: job.to - job.from),
]
))
])

 Returns: a dict (if a single model instance was serialized) or a list
 od dicts (if a QuerySet was serialized) with the serialized data. The
 data returned is suitable for JSON serialization using Django's JSON
 serializator.
 """

 if related is not None:
 import warnings
 warnings.warn("'related' is deprecated syntax", DeprecationWarning)
 return serialize_deprecated(src, fields=fields, related=related)

 def subs(subsrc):
 return serialize(subsrc, fields=fields, include=include,
 exclude=exclude, fixup=fixup)

 if isinstance(src, models.Manager):
 return [subs(i) for i in src.all()]

 elif (isinstance(src, list) or
 isinstance(src, models.query.QuerySet) or
 isinstance(src, set)):
 return [subs(i) for i in src]

 elif isinstance(src, dict):
 return dict((k, subs(v)) for k, v in src.items())

 elif isinstance(src, models.Model):
 return serialize_model(src, fields=fields, include=include,
 exclude=exclude, fixup=fixup)

 else:
 return src

[docs]def flatten(attname):
 """Fixup helper for serialize.

 Given an attribute name, returns a fixup function suitable for serialize()
 that will pull all items from the sub-dict and into the main dict. If
 any of the keys from the sub-dict already exist in the main dict, they'll
 be overwritten.
 """

 def fixup(obj, data):
 for k, v in data[attname].items():
 data[k] = v
 del data[attname]
 return data
 return fixup

 © Copyright 2012-2014, DjangoRestless contributors.
 Created using Sphinx 1.3.5.

_static/up.png

_modules/restless/http.html

 Navigation

 		
 index

 		
 modules |

 		DjangoRestless 0.0.9 documentation »

 		Module code »

 Source code for restless.http

from django import http
from django.core.serializers.json import DjangoJSONEncoder

try:
 # json module from python > 2.6
 import json
except ImportError:
 # use packaged django version of simplejson
 from django.utils import simplejson as json

__all__ = ['JSONResponse', 'JSONErrorResponse', 'HttpError',
 'Http200', 'Http201', 'Http400', 'Http401', 'Http403']

[docs]class JSONResponse(http.HttpResponse):
 """HTTP response with JSON body ("application/json" content type)"""

 def __init__(self, data, **kwargs):
 """
 Create a new JSONResponse with the provided data (will be serialized
 to JSON using django.core.serializers.json.DjangoJSONEncoder).
 """

 kwargs['content_type'] = 'application/json; charset=utf-8'
 super(JSONResponse, self).__init__(json.dumps(data,
 cls=DjangoJSONEncoder), **kwargs)

[docs]class JSONErrorResponse(JSONResponse):
 """HTTP Error response with JSON body ("application/json" content type)"""

 def __init__(self, reason, **additional_data):
 """
 Create a new JSONErrorResponse with the provided error reason (string)
 and the optional additional data (will be added to the resulting
 JSON object).
 """
 resp = {'error': reason}
 resp.update(additional_data)
 super(JSONErrorResponse, self).__init__(resp)

[docs]class Http200(JSONResponse):
 """HTTP 200 OK"""
 pass

[docs]class Http201(JSONResponse):
 """HTTP 201 CREATED"""
 status_code = 201

[docs]class Http400(JSONErrorResponse, http.HttpResponseBadRequest):
 """HTTP 400 Bad Request"""
 pass

[docs]class Http401(http.HttpResponse):
 """HTTP 401 UNAUTHENTICATED"""
 status_code = 401

 def __init__(self, typ='basic', realm="api"):
 super(Http401, self).__init__()
 if typ == 'basic':
 self['WWW-Authenticate'] = 'Basic realm="%s"' % realm
 else:
 assert False, 'Invalid type ' + str(typ)
 self.status_code = 403

[docs]class Http403(JSONErrorResponse, http.HttpResponseForbidden):
 """HTTP 403 FORBIDDEN"""
 pass

class Http404(JSONErrorResponse):
 """HTTP 404 Not Found"""
 status_code = 404

class Http409(JSONErrorResponse):
 """HTTP 409 Conflict"""
 status_code = 409

class Http500(JSONErrorResponse):
 """HTTP 500 Internal Server Error"""
 status_code = 500

[docs]class HttpError(Exception):
 """Exception that results in returning a JSONErrorResponse to the user."""

 def __init__(self, code, reason, **additional_data):
 super(HttpError, self).__init__(self, reason)
 self.response = JSONErrorResponse(reason, **additional_data)
 self.response.status_code = code

 © Copyright 2012-2014, DjangoRestless contributors.
 Created using Sphinx 1.3.5.

_modules/restless/modelviews.html

 Navigation

 		
 index

 		
 modules |

 		DjangoRestless 0.0.9 documentation »

 		Module code »

 Source code for restless.modelviews

from django.forms.models import modelform_factory

from .views import Endpoint
from .http import HttpError, Http200, Http201

from .models import serialize

__all__ = ['ListEndpoint', 'DetailEndpoint', 'ActionEndpoint']

def _get_form(form, model):
 if form:
 return form
 elif model:
 return modelform_factory(model)
 else:
 raise NotImplementedError('Form or Model class not specified')

[docs]class ListEndpoint(Endpoint):
 """
 List :py:class:`restless.views.Endpoint` supporting getting a list of
 objects and creating a new one. The endpoint exports two view methods by
 default: get (for getting the list of objects) and post (for creating a
 new object).

 The only required configuration for the endpoint is the `model`
 class attribute, which should be set to the model you want to have a list
 (and/or create) endpoints for.

 You can also provide a `form` class attribute, which should be the
 model form that's used for creating the model. If not provided, the
 default model class for the model will be created automatically.

 You can restrict the HTTP methods available by specifying the `methods`
 class variable.
 """

 model = None
 form = None
 methods = ['GET', 'POST']

[docs] def get_query_set(self, request, *args, **kwargs):
 """Return a QuerySet that this endpoint represents.

 If `model` class attribute is set, this method returns the `all()`
 queryset for the model. You can override the method to provide custom
 behaviour. The `args` and `kwargs` parameters are passed in directly
 from the URL pattern match.

 If the method raises a :py:class:`restless.http.HttpError` exception,
 the rest of the request processing is terminated and the error is
 immediately returned to the client.
 """

 if self.model:
 return self.model.objects.all()
 else:
 raise HttpError(404, 'Resource Not Found')

[docs] def serialize(self, objs):
 """Serialize the objects in the response.

 By default, the method uses the :py:func:`restless.models.serialize`
 function to serialize the objects with default behaviour. Override the
 method to customize the serialization.
 """

 return serialize(objs)

[docs] def get(self, request, *args, **kwargs):
 """Return a serialized list of objects in this endpoint."""

 if 'GET' not in self.methods:
 raise HttpError(405, 'Method Not Allowed')

 qs = self.get_query_set(request, *args, **kwargs)
 return self.serialize(qs)

[docs] def post(self, request, *args, **kwargs):
 """Create a new object."""

 if 'POST' not in self.methods:
 raise HttpError(405, 'Method Not Allowed')

 Form = _get_form(self.form, self.model)
 form = Form(request.data or None, request.FILES)
 if form.is_valid():
 obj = form.save()
 return Http201(self.serialize(obj))

 raise HttpError(400, 'Invalid Data', errors=form.errors)

[docs]class DetailEndpoint(Endpoint):
 """
 Detail :py:class:`restless.views.Endpoint` supports getting a single
 object from the database (HTTP GET), updating it (HTTP PUT) and deleting
 it (HTTP DELETE).

 The only required configuration for the endpoint is the `model`
 class attribute, which should be set to the model you want to have the
 detail endpoints for.

 You can also provide a `form` class attribute, which should be the
 model form that's used for updating the model. If not provided, the
 default model class for the model will be created automatically.

 You can restrict the HTTP methods available by specifying the `methods`
 class variable.

 """
 model = None
 form = None
 lookup_field = 'pk'
 methods = ['GET', 'PUT', 'DELETE']

[docs] def get_instance(self, request, *args, **kwargs):
 """Return a model instance represented by this endpoint.

 If `model` is set and the primary key keyword argument is present,
 the method attempts to get the model with the primary key equal
 to the url argument.

 By default, the primary key keyword argument name is `pk`. This can
 be overridden by setting the `lookup_field` class attribute.

 You can override the method to provide custom behaviour. The `args`
 and `kwargs` parameters are passed in directly from the URL pattern
 match.

 If the method raises a :py:class:`restless.http.HttpError` exception,
 the rest of the request processing is terminated and the error is
 immediately returned to the client.
 """

 if self.model and self.lookup_field in kwargs:
 try:
 return self.model.objects.get(**{
 self.lookup_field: kwargs.get(self.lookup_field)
 })
 except self.model.DoesNotExist:
 raise HttpError(404, 'Resource Not Found')
 else:
 raise HttpError(404, 'Resource Not Found')

[docs] def serialize(self, obj):
 """Serialize the object in the response.

 By default, the method uses the :py:func:`restless.models.serialize`
 function to serialize the object with default behaviour. Override the
 method to customize the serialization.
 """

 return serialize(obj)

[docs] def get(self, request, *args, **kwargs):
 """Return the serialized object represented by this endpoint."""

 if 'GET' not in self.methods:
 raise HttpError(405, 'Method Not Allowed')

 return self.serialize(self.get_instance(request, *args, **kwargs))

[docs] def put(self, request, *args, **kwargs):
 """Update the object represented by this endpoint."""

 if 'PUT' not in self.methods:
 raise HttpError(405, 'Method Not Allowed')

 Form = _get_form(self.form, self.model)
 instance = self.get_instance(request, *args, **kwargs)
 form = Form(request.data or None, request.FILES,
 instance=instance)
 if form.is_valid():
 obj = form.save()
 return Http200(self.serialize(obj))
 raise HttpError(400, 'Invalid data', errors=form.errors)

[docs] def delete(self, request, *args, **kwargs):
 """Delete the object represented by this endpoint."""

 if 'DELETE' not in self.methods:
 raise HttpError(405, 'Method Not Allowed')

 instance = self.get_instance(request, *args, **kwargs)
 instance.delete()
 return {}

[docs]class ActionEndpoint(DetailEndpoint):
 """
 A variant of :py:class:`DetailEndpoint` for supporting a RPC-style action
 on a resource. All the documentation for DetailEndpoint applies, but
 only the `POST` HTTP method is allowed by default, and it invokes the
 :py:meth:`ActionEndpoint.action` method to do the actual work.

 If you want to support any of the other HTTP methods with their default
 behaviour as in DetailEndpoint, just modify the `methods` list to
 include the methods you need.

 """
 methods = ['POST']

 def post(self, request, *args, **kwargs):
 if 'POST' not in self.methods:
 raise HttpError(405, 'Method Not Allowed')

 instance = self.get_instance(request, *args, **kwargs)
 return self.action(request, instance, *args, **kwargs)

 def action(self, request, obj, *args, **kwargs):
 raise HttpError(405, 'Method Not Allowed')

 © Copyright 2012-2014, DjangoRestless contributors.
 Created using Sphinx 1.3.5.

